CLINICAL VIROTHERAPY AND IMMUNE MODULATION – BENCH TO BEDSIDE AND BACK AGAIN

Alan Melcher
Professor of Clinical Oncology and Biotherapy
BACKGROUND

• Oncolytic viruses (OV) were initially developed as direct cytotoxic agents.
• Can be naturally occurring (reovirus) or genetically modified (HSV, VV)
• We, and others, have shown that they can also act by activating an anti-tumour immune response.
• HSV.GMCSF (T-Vec) completed Phase III as intratumoural therapy for melanoma – trial met its primary endpoint of durable response rate.
• Little known about the biological effects of OV in humans.
BACKGROUND

- Reovirus is a dsRNA virus which targets cells with activation of the ras pathway (?).
- Almost everyone exposed to reovirus in childhood and so NAB positive.
- Previous lab work: In mouse and human pre-clinical systems reovirus is effective by direct and immune-mediated effects, alone or in combination with chemotherapy or radiotherapy.
- Reolysin has been through Phase I/II trials.
- I.t. and i.v. delivery, single agent and in combination with chemotherapy or radiotherapy.
- Phase III trial in head and neck cancer in platinum-resistant disease: carbo/taxol +/- reovirus (REO 18).
REO 13 TRIAL – A BIOLOGICAL ENDPOINT STUDY

- Patients with colorectal cancer metastatic to the liver, planned for radical surgery.
- One cycle of single agent iv reovirus (5 daily treatments), 1 – 5 weeks before surgery.
- Endpoints were immune response and analysis of blood, tumour and normal liver.
- An experiment in a patient.

![Graphical representation of the trial timeline and blood collection points.](image-url)
All patients are positive for NAB at baseline
Peak response is generally at surgery timepoint
FATE OF REO AFTER IV DELIVERY

• After intravenous delivery in patients:
• Reovirus RNA is present in plasma and associated with PBMC, granulocytes and platelets (not red blood cells), but this is transient.
• Cell-associated, but not plasma, reovirus is ‘functional’ ie able to replicate and kill after hand-off to target cells.
• Cell-associated virus can potentially deliver virus to target tumour cells in patients.
CELL CARRIAGE BY GRANULOCYTES

Neat:
Amplified 10-1:
Amplified 10-2:

(AMP)

7 | 8 | 9 | 10 | - | + | - | +

7: 8: 9: 10: 10-1 10-2 10-3 10-4 10-5 10-6 UN

Reo:

<table>
<thead>
<tr>
<th>Pre-treatment</th>
<th>1 hour post 1st infusion</th>
<th>Pre 3rd infusion</th>
<th>Pre 5th infusion</th>
<th>Pre surgery</th>
<th>1 month post surgery</th>
<th>3 months post surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient 1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patient 2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patient 3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patient 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patient 5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patient 6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Patient 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Patient 8</td>
<td>0</td>
<td>1.46 x 10^7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Patient 9</td>
<td>0</td>
<td>3.16 x 10^7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Patient 10</td>
<td>0</td>
<td>3.16 x 10^7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
STAINING FOR REOVIRUS PROTEIN IN TUMOUR

9 out of 10 patients positive: 3 scored as weak, 6 scored strong

weak staining

strong staining

Tumour staining always stronger in tumour than surrounding stroma or normal liver
Hepatocyte staining: 5 patients negative, 5 patients faint staining
Consistent with some delivery to liver as indicated by transaminitis
In all 4 patients viral plaques could be retrieved from tumour but not normal liver.
CONCLUSIONS

• Reovirus is delivered preferentially to tumours after iv infusion despite the presence of NAB at baseline.
• Reovirus RNA appears only transiently in blood.
• ‘Functional’ virus is associated with cells; plasma virus is neutralised.
• Virus injection triggers early, innate immune response reflected by clinical side effects/rise in CRP, which clears virus before rise in NAB.
• Replication-competent virus can be selectively retrieved from tumour at the time of surgery.
• Pre-operative delivery safe, paving the way for neoadjuvant studies.
BACK TO THE LAB – HOW TO IMPROVE DELIVERY/ThERAPY?

• Boosting the number and/or activation state of virus carrier cells may enhance both delivery to tumour and immune-mediated reovirus therapy.

• Tested reovirus in mice in combination with GMCSF, GCSF, IL-2.

• Continued focus on systemic delivery, rather than ex vivo loading of carrier cells, which is clinically challenging and expensive.

• ‘In vivo loading of cell carriers for systemic delivery of reovirus’.
IN VIVO LOADING OF CELL CARRIERS FOR SYSTEMIC DELIVERY OF REOVIRUS

• Granulocytes/macrophages – GM-CSF.
• Granulocytes – G-CSF.
• Lymphocytes – IL-2.
IN VIVO LOADING OF CELLS CARRIERS IN COMBINATION WITH GM-CSF LEADS TO CURE OF S.C. TUMOURS EVEN IN PRE-IMMUNIZED MICE
THERAPY ASSOCIATED WITH A SINGLE CYCLE OF GM-CSF/REO IS SIGNIFICANTLY BETTER IN PRE-IMMUNE MICE (3 DAY ESTABLISHED S.C. TUMOUR)
GM-CSF/REO is also highly effective against well established tumour (pre-immune; 10D established S.C.).
IN VIVO LOADING OF CELL CARRIERS FOR SYSTEMIC DELIVERY OF REOVIRUS

• NAB-reovirus pre-bound complexes can be handed onto tumour cells from macrophages in vitro.

• GM-CSF activated splenocytes/lymph node cells kill target reovirus-resistant tumour cells in vitro in the presence of NAB-reovirus complexes – dependent on NK cells and macrophages.
IN VIVO THERAPY WITH REO/GMCSF IN PRE-IMMUNE MICE IS DEPENDENT ON NK CELLS AND MONOCYTES, BUT NOT T CELLS OR NEUTROPHILS

Antibody depletion of:
Ly-6C+ve cells - expressed on neutrophils and monocytes
Ly-6G+ve - expressed on neutrophils
IN VIVO THERAPY ALSO SEEN IN S.C. TC2 PROSTATE TUMOURS IN PRE-IMMUNE MICE

The graph shows the percent survival over days for different groups:
- Control
- reo
- GM-CSF
- GM-CSF + reo

The y-axis represents percent survival, and the x-axis represents days.
SOME EFFECT ALSO SEEN WITH IL-2, BUT NOT WITH G-CSF
GM-CSF CONDITIONING FACILITATES EFFECTIVE SYSTEMIC THERAPY WITH REOVIRUS

Activated mono/macs:
- FcR +ve
- Tumour trafficking/viral delivery

TUMOUR CELL

GM-CSF activated Mono/mac Tumour trafficking
TUMOUR

Virus release
- Replication
- Oncolysis
- Anti Viral Immune Response

Anti-Viral Innate Immune Response; NK Cells; Others

GM-CSF CONDITIONING FACILITATES DIRECT AND INNATE IMMUNE-MEDIATED KILLING

GM-CSF activated Mono/macs
- Fc Receptor +ve
- Tumour trafficking

TUMOUR

TNF-α ? others

NK
NEXT TRIAL

- Biological endpoint study.

- Reovirus +/- GMCSF prior to planned resection of advanced melanoma.

- Patients will be pre-immunised against the virus.
BRAIN TUMOURS

• Both primary and secondary are major unmet clinical need.

• Most oncolytic virotherapy given by direct injection.

• But can systemic oncolytic viruses cross blood brain barrier?

• Far easier for widespread clinical application to multifocal/infiltrative disease.
PRE-CLINICAL DATA

- Reovirus can enter CNS via haematogenous spread in mice.
- Confirmed reovirus can cross BBB in mice and selectively infect implanted melanoma (even in pre-immune mice).
- Early suggestion that access may be enhanced by radiotherapy.
THERAPY WITH GM-CSF/REO IN PRE-IMMUNE MICE IN MELANOMA REOVIRUS-SENSITIVE BRAIN METASTASIS MODEL

5d Established Intra-cranial B16 Tumours Treated with 3 Cycles of GM-CSF/REO
THERAPY WITH GM-CSF/REO IN PRE-IMMUNE MICE IN MELANOMA REOVIRUS-RESISTANT BRAIN METASTASIS MODEL

Established Intra-cranial B16.OVA Tumours Treated with GM-CSF/REO
5d Established intra-cranial GL261 Tumours Treated with 3 Cycles of GM-CSF/REO

Currently working on combination with targeted radiotherapy/chemotherapy
BACK TO THE CLINIC - REO13 BRAIN STUDY

- Phase 1b translational trial.
- Preoperative intravenous reovirus.
- Recurrent high grade primary or metastatic brain tumours.
- Can intravenous virus access tumours in the brain in patients?
- Similar design to REO13, administering a single iv infusion of reovirus, prior to resection.
- 4 patients treated, 3 analysed - tumour positive for reovirus in all 3 analysed.
Patient 1 - GBM

No primary antibody (protein) Primary & brown secondary (protein)

Reoviral RNA – blue is positive

Primary & brown secondary (protein)
Patient 2 - colorectal adenocarcinoma

No primary antibody (protein)

Reoviral RNA (blue is +); viral protein is red, cells expressing viral RNA and protein are yellow

Primary & brown secondary (protein)

Primary & red secondary (protein)
Patient 3 – grade 3 oligodendroglioma; less positive

No primary antibody (protein) Primary & brown secondary (protein)

Reoviral RNA – blue is positive Primary & red secondary (protein)
Trial: Phase I/randomised Phase II Trial of Reovirus/GM-CSF in combination with chemoradiation following surgery for high grade glioma

<table>
<thead>
<tr>
<th></th>
<th>Within 28 days</th>
<th>Week 1</th>
<th>Week 2</th>
<th>Week 3</th>
<th>Week 4</th>
<th>Week 5</th>
<th>Week 6</th>
<th>Week 10</th>
<th>Week 14</th>
<th>Week 18</th>
<th>Week 22</th>
<th>Week 26</th>
<th>Week 30</th>
<th>4 weeks after last REOLYSIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiotherapy</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temozolomide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Continuous</td>
<td>5 days</td>
<td>5 days</td>
<td>5 days</td>
<td>5 days</td>
<td>5 days</td>
<td></td>
</tr>
<tr>
<td>REOLYSIN/GMCSF</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Physical exam and neurological assessment</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Complete medical history</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
</tr>
<tr>
<td>Height and Weight</td>
<td></td>
</tr>
<tr>
<td>Performance status (ECOG)</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Toxicity</td>
<td></td>
</tr>
<tr>
<td>Vital signs</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Urinalysis</td>
<td></td>
</tr>
<tr>
<td>FBC, LFT, CRP, serum chemistry</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Serum pregnancy test</td>
<td></td>
</tr>
<tr>
<td>HIV/Hepatitis screen</td>
<td></td>
</tr>
<tr>
<td>Translational bloods</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Concomitant medications</td>
<td></td>
<td>x</td>
</tr>
</tbody>
</table>
SUMMARY

• Systemic delivery is feasible in patients in the face of NAB.
• Intravenous oncolytic viruses can access tumours in the brain in patients.
• Iterative lab to clinic research is most likely to deliver patient benefit, but does not substitute for therapeutic clinical trials.
• Parallel (not sequential) lab and clinical studies help progress.
• Rational combinations with current or deliverable immunomodulatory therapies (as well as standard chemo- and radiotherapy), in the laboratory and clinic are likely to enhance the benefit of oncolytic viruses.
Acknowledgements

Fiona Errington
Liz Ilett
Emma West
Karen Scott
Ailsa Rose
Adel Jebar
Gemma Migneco

Giles Toogood
Rob Adair
Susan Short
Paul Chumas
Simon Thomson

Richard Vile
Tim Kottke
Jill Thompson
Kevin Harrington
Vickie Roulstone
Hardev Pandha

Matt Coffey (Oncolytics)
Jerry Nuovo